銘傳大學九十一學年度資訊管理研究所碩士班招生考試 資訊傳播工程

第四節

離散數學 試題

- 1. (20pts.) For the following statements the universe comprises all nonzero integers. Determine the truth or falsity of each statement. If a statement is false, give a counterexample.
 - (a) $\exists x \forall y [xy = 1]$
 - (b) $\forall x \forall y [a > b \rightarrow a^2 > b^2]$
 - (c) $\exists x \exists y [(3x y = 7) \land (2x + 4y = 3)]$

Let the universe for the variables in the following statements consist of all real numbers. Please negate and simplify these statements.

- (d) $\forall x \forall y [(x < y) \rightarrow \exists z (x < z < y)]$
- (e) $\lim_{x \to a} f(x) = L \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0 \forall x [(0 < |x a| < \delta) \rightarrow (|f(x) L| < \varepsilon)]$
- (15pts.)(a) Let R₁ be a partial order relation on A and R₂ be a partial order relation on B. On A x B, we define relation R by (a, b) R(x, y) if a R₁ x and b R₂ y. Show that R is a partial order.
 - (b) If $A = A1 \cup A2 \cup A3$, where $A_1 = \{1, 2\}$, $A_2 = \{3, 4\}$ and $A_3 = \{5\}$, define relation R on A by x Ry if x and y are in the same subset Ai, $1 \le i \le 3$. Explain whether R is an equivalence relation.
- 3. (5pts.)Show that any subset of size six from the set $S = \{1, 2, 3, ..., 9\}$ must contain two elements whose sum is 10.
- 4. (10pts.) Let f: $Z \square N$ be defined by

$$f(x) = \begin{cases} 2x - 1, & \text{if } x > 0\\ -2x, & \text{for } x \le 0 \end{cases}$$

- (a) Prove that f is one-to-one and onto.
- (b) Determine f^{-1} .
- 5. (10pts.)(a) The sequence of the Lucas numbers is defined recursively by

1) $L_0 = 2, L_1 = 1;$ and

2) $L_n = L_{n-1} + L_{n-2}$, for $n \in Z^+$ with $n \ge 2$

Prove that for $n \ge N$

$$\sum_{i=0}^{n} Li = L_{n+2} - 1$$

(b) Let T_n denote the number of movements of discs in the Hanoi

Tower problem with n discs. Define the recurrence relation for the recursive algorithm that you may design. Solve the recurrence relation for T_n .

- 6. (20pts.)(a) Give the definition of a tree. (Suppose that G=(V, E) is a undirected graph.)
 - (b) Prove that in any tree T=(V, E), |V| = |E| + 1.
 - (c) Let T = (V, E) be a tree with |V| = n. How many distinct paths are there in T?
 - (d) Describe an algorithm you used to find a minimum spanning tree. What is the time complexity of your algorithm? Explain.
- 7. (10pts.)(a) What is a bipartite graph?
 - (b) Prove that the following graph is not bipartite.

8. (10pts.)(a) What is "graph isomorphism"?

(b) Draw a graph G_2 which is isomorphic to the following graph G_1 .

試題完